Podcast Sejarah

Yayasan Sains Negara - Sejarah

Yayasan Sains Negara - Sejarah


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

National Science Foundation - agensi persekutuan bebas di cabang eksekutif. Dicipta oleh National Science Foundation Act tahun 1950, ia mempromosikan penyelidikan, pengembangan dan pendidikan dalam sains dan kejuruteraan. Ini memberikan geran untuk projek-projek yang menunjukkan potensi untuk memberikan sumbangan yang signifikan kepada badan pengetahuan saintifik atau penyediaan dan pelaksanaan pendidikan sains yang berkesan.

. .



Rekod Yayasan Sains Nasional [NSF]

Ditubuhkan: Sebagai agensi bebas oleh National Science Foundation Act 1950 (64 Stat. 149), 10 Mei 1950, seperti yang dipinda.

Fungsi: Membiayai projek penyelidikan dan program pendidikan dalam sains dan kejuruteraan. Menggalakkan pertukaran maklumat saintifik dan kejuruteraan antarabangsa.

Mencari Bantuan: Sebilangan inventori dalam edisi mikro National Archives edisi awal.

Rekod Berkaitan:
Rakam salinan penerbitan Yayasan Sains Nasional dalam RG 287, Penerbitan Kerajaan A.S.
Rekod Pejabat Penyelidikan dan Pembangunan Ilmiah, RG 227.
Rekod Pejabat Penyelidikan Tentera Laut, RG 298.
Rekod Pejabat Sains dan Teknologi, RG 359.

307.2 Rekod Am
1949-87

Sejarah: Tanggungjawab NSF di bawah Akta NSF tahun 1950 untuk pembangunan dasar sains nasional dan penyelarasan penyelidikan saintifik kerajaan persekutuan dipindahkan ke Pejabat Sains dan Teknologi (OST) yang baru ditubuhkan oleh Pelan Penyusunan Semula No. 2 tahun 1962, berkuatkuasa pada 8 Jun 1962. OST dimansuhkan , dengan fungsi Penasihat Sains kepada Presiden dipindahkan dari Pengarah OST ke Pengarah NSF, dengan Pelan Penyusunan Semula No. 1 tahun 1973, berkuat kuasa 1 Julai 1973. Pejabat Dasar Sains dan Teknologi (OSTP) ditubuhkan, dan fungsi Penasihat Sains kepada Presiden ditukarkan dari Pengarah NSF ke Pengarah OSTP, oleh Akta Organisasi Penasihat Sains dan Teknologi Presiden 1976 (90 Stat. 459), 11 Mei 1976.

Rekod Teks: Surat-menyurat pusat, 1949-63. Hubungan subjek Pengarah NSF, H. Guyford Stever, dalam kapasitinya sebagai Penasihat Sains kepada Presiden, 1973-76. Subjek korespondensi Pengarah Bersekutu untuk Kegiatan Pendidikan dan Antarabangsa, Harry C. Kelly, termasuk surat-menyurat yang dibuat ketika dia menjadi Penolong Pengarah Personel dan Pendidikan Ilmiah (1951-59), 1951-62. Fail perundangan penasihat umum, 1956-70. Fail kes kontrak, 1966-87.

Rekod Berkaitan: Rekod Pejabat Pembantu Khas Presiden untuk Sains dan Teknologi, dalam RG 359, Rekod Pejabat Sains dan Teknologi. Wawancara sejarah lisan Wilson Harwood, Penolong Pengarah NSF (1951-57), di Perpustakaan Eisenhower.

307.3 Rekod Bahagian Pengajian Sumber Sains, Pejabat Penolong Pengarah Personel Ilmiah dan Pendidikan
1954-70

Rekod Boleh Dibaca Mesin: Daftar Nasional Personel Ilmiah dan Teknikal, 1954-70 (8 set data), dengan dokumentasi sokongan. Tinjauan Pekerjaan Sains dan Jurutera, 1971 (1 set data), dengan dokumentasi sokongan. Daftar Jurutera Nasional, 1964-69 (3 set data), dengan dokumentasi sokongan. Lihat juga 307.14.

307.4 Rekod Pejabat Pengarah, Program Kerajaan dan Awam
1953-81

307.4.1 Rekod am

Rekod Teks: Fail subjek terpilih, 1953-75.

Gambar bergerak: Di Ais, mengenai penyelidikan Antartika, 1969 (1 gulungan). Kapal Yang Sangat Istimewa, mengenai kapal penyelidikan Pencabar Glomar, 1973 (1 kekili). Ujian TV untuk Masa Depan, mendokumentasikan penggunaan komunikasi televisyen, 1979 (1 gulungan). Lihat juga 307.11.

Rakaman Video: Sains pada tahun tujuh puluhan, berurusan dengan penyelidikan saintifik pada tahun 1970-an, 1974 (1 item). Lihat juga 307.12.

307.4.2 Rekod Pejabat Penolong Pengarah untuk
Pendidikan Sains yang berkaitan dengan Pengertian Ilmu Masyarakat
(PUS) Program

Gambar bergerak: Dihasilkan di bawah Program PUS, dan terdiri dari Perigi Hidup, mendokumentasikan penerokaan lautan, 1976 (1 gulungan) Meletup Alam Semesta, menjelaskan teori pengembangan alam semesta, 1977 (1 gulungan) Ruang Bumi, meliputi magnetosfera dan tali pinggang radiasi Van Allen, 1977 (1 gelendong) dan Apabila Sungai Berjemur, menangani peruntukan air di barat daya Amerika Syarikat, 1978 (1 gelendong). Lihat juga 307.11.

Rakaman Video: Dihasilkan di bawah Program PUS untuk siaran di televisyen komersial dan awam, yang berurusan dengan pelbagai topik ilmiah dan teknologi, 1976-81 (17 item). Lihat juga 307.12.

Rakaman Bunyi: Dihasilkan di bawah Program PUS untuk siaran di radio komersial dan awam, berurusan dengan pelbagai topik ilmiah dan teknologi, 1977-81 (17 item). Lihat juga 307.13.

Slaid Warna: "The Universe Dr. Einstein," persembahan slaid yang dihasilkan di bawah Program PUS, 1979 (199 item).

307.5 Rekod Bahagian Program Polar dan Pendahulu
1907-87 (pukal 1955-87)

Sejarah: Pejabat Tahun Geofizik Antarabangsa (IGY), yang bertanggungjawab untuk membiayai penyertaan AS dalam eksplorasi antarabangsa Antartika semasa IGY (1 Julai 1956-31 Disember 1957), ditubuhkan di Pejabat Pengarah NSF, April 1955. Dipindahkan ke Pejabat Pengarah Bersekutu untuk Penyelidikan, 1957. Direka semula Pejabat Program Antarabangsa Khas, dan bertanggungjawab untuk Program Penyelidikan Antartika AS (USARP), 4 Ogos 1958. Fungsi USARP dipindahkan ke Pejabat Program Antartika (OAP) yang baru ditubuhkan, 26 Mei 1961. OAP dipindahkan ke Pejabat Pengarah Bersekutu (Kegiatan Antarabangsa) yang baru ditubuhkan, 1 November 1962. Dipindahkan ke Pejabat Pengarah Bersekutu (Penyelidikan), berkuatkuasa pada 1 September 1963, oleh Memorandum Staf O / D 9, 16 Ogos 1963. Dipindahkan ke yang baru ditubuhkan Bahagian Sains Alam Sekitar di Pejabat Pengarah Bersekutu (Penyelidikan) oleh Memorandum Staf O / D 65-23, 19 November 1965. Dipindahkan ke Pejabat Penolong Pengarah yang baru ditubuhkan untuk Program Nasional dan Antarabangsa, berkuat kuasa pada 27 Oktober 1969, oleh Memorandum Staf O / D 69-26, 24 Oktober 1969. Direka semula Program Program Kutub (RRJP), dan bertanggung jawab atas arahan kedua-dua program penyelidikan Artik dan Antartika, 19 Disember , 1969. Dipindahkan ke Direktorat Ilmu Astronomi, Atmosfera, Bumi, dan Lautan yang baru ditubuhkan (AAEOS), berkuatkuasa pada 30 September 1975, oleh Memorandum Staf O / D 75-37, 25 Ogos 1975. Bahagian Program Polar yang Dicipta Semula (DPP) ) oleh Memorandum Staf O / D 76-22, 19 April 1976. Direktorat AAEOS direka semula Direktorat Geosains, 1 Mei 1986.

307.5.1 Rekod Pejabat Geofizik Antarabangsa
Tahun dan Pejabat Program Antarabangsa Khas

Rekod Teks: Salinan edaran minit, rancangan program, anggaran anggaran, dan rekod lain Jawatankuasa Nasional A.S. untuk Tahun Geofizik Antarabangsa, 1955-59. Log, memorandum, dan catatan lain dari Little America Station, Antartika, 1957-58. Bilangan laporan status antartika yang dikeluarkan oleh Office of USARP, 1959-61.

307.5.2 Rekod Program Antartika Pejabat, Pejabat
Program Polar, dan Pembahagian Program Polar

Rekod Teks: Korespondensi pusat perpuluhan dan alfanumerik, 1957-87. Mesej, terutamanya antara Washington, DC, ibu pejabat dan stesen medan antartika, 1961-87. Fail kes pemberian dan kontrak, 1959-87. Laporan stesen lapangan Antartika, 1961-69. Rekod yang berkaitan dengan kapal penyelidikan antartika, USNS Eltanin, 1962-73. Surat-menyurat, fail program, dan fail projek individu kakitangan dan pejabat bawahan, 1961-83. Rekod disimpan oleh wakil pejabat pusat ("Wakil USARP") di Antartika, 1966-70 di New Zealand, 1976-79 dan di atas kapal USNS Eltanin, 1962-72. Terjemahan kajian kutub Soviet yang diterbitkan oleh NSF, 1955-70.

Peta: Ekspedisi Antartika Britain, 1907-9 (3 item). Ekspedisi Antartika Australasia, 1911-14 (3 item). Antarctic Traverse II, Plateau Station to Queen Maud's Land, 1964 (2 item). Beardmore Glacier melintasi, n.d. (1 item). Rangkaian Komunikasi Antarabangsa Antartika, n.d. (1 item). Carta navigasi udara Antartika, 1958-63 (5 item). Aktiviti USARP, 1960- 61 (2 item). Antartika, dihasilkan oleh American Geographic Society, bersama dengan IGY, 1957-58 (5 item), dan untuk USARP, 1962 (1 item) dan 1970 (3 item). Lihat juga 307.10.

Gambar Udara: Paparan satelit wilayah antartika, 1970-73 (1,459 item). Pengesanan udara USARP dari Beardmore Glacier, 29 Disember 1958 (141 item). Pengesanan udara, Antartika, 24 Disember 1958 (63 item), dan 8 Januari 1968 (12 item). Pengesanan udara, Pergunungan Bush, Antartika, 1959 (17 item). Pemandangan udara, tapak reaktor nuklear, McMurdo Sound, Antartika, 1 Disember 1968 (8 item). Lihat juga 307.10.

Gambar bergerak: Filem yang dikumpulkan atau dikendalikan oleh Polar Information Service yang mendokumentasikan pengawalan Thomas B. Owens, Penolong Pengarah Program Nasional dan Antarabangsa NSF, Januari 1971 (1 gulungan) ujian peralatan, 25 September 1971 (1 gulungan) dan AIDJEX (Arctic Ice Projek Bersama Dinamik), 1972 (1 kekili). Filem Office of Antarctic Program yang berkaitan dengan aktiviti USNS Eltanin, 1963 (4 kekili). Filem Program Kerjasama dan Maklumat Antarabangsa OAP Kuasa untuk Benua Tujuh, n.d. (1 kekili) Persembahan Berita NBC: Chet Huntley - Melalui Drake Passage dengan USNS Eltanin, n.d. (1 kekili) Di Ais, n.d. (1 kekili) Stesen Drift Soviet, 1968 (1 gulungan) dan mendokumentasikan ujian ruang pemerhatian bawah ais, n.d. (1 kekili). Kegiatan penyelidikan kutub, 1961-68 (10 gulungan), 1971-72. Lihat juga 307.11.

Rakaman Video: Antartika, nd (2 item)

Rakaman Bunyi: Upacara di South Pole Station untuk menghormati ulang tahun kelima puluh Ekspedisi Scott-Amundsen, 30 Oktober 1961 (2 gulungan). Rakaman Program Kerjasama dan Maklumat Antarabangsa OAP, yang terdiri daripada pita demonstrasi Stanford University VLF (Very Low Frequency) mengenai peluit hidung, wisel swishy, ​​dan fenomena VLF yang serupa, wawancara 1958-63 (1 reel) yang dilakukan oleh wartawan Tentera Laut AS Craig Duncan di McMurdo Sound Stesen, Antartika, saintis pertukaran Rusia Peter Astakov (ahli fizik atmosfera atas) dan BG Lupatin (ahli geologi), November-Disember 1967 (1 reel) Operasi Deep Freeze 66 wawancara pasca musim Pengarah USARP Tom O. Jones, 1965-66 (1 reel) ceramah oleh Louis Quam, ketua saintis OAP, 27 Disember 1968 (2 gulungan) ) dan wawancara William A. Briesmeister, kartografer dengan American Geographical Society, yang menghubungkan dunia peta dan projek peta Antartika, nd (1 kekili). Rakaman Perkhidmatan Maklumat Polar kuliah di Stesen Suara McMurdo, Antartika, oleh Laurence M. Gould, ketua saintis dengan Ekspedisi Antartika Byrd Pertama (1928-30), ketua Jawatankuasa Penyelidikan Polar (Akademi Sains Nasional), dan ahli (1952-62) NSF, 10 Januari 1977 (2 kekili, 1 kaset). Dua belas tahun dari Antartika, 1976 (1 kekili). Kegiatan penyelidikan kutub, 1958-68 (6 gulungan). Lihat juga 307.13.

Gambar: Kegiatan, peralatan, dan kemudahan USARP, 1957-70 (996 gambar). Lihat juga 307.15.

307.6 Rekod Pejabat Penolong Pengarah Sains Biologi, Tingkah Laku, dan Sosial
1976-81

Rekod Boleh Dibaca Mesin: Contoh maklumat demografi penggunaan awam dari Banci A.S. 1900, yang dihasilkan oleh Pusat Pengajian Demografi dan Ekologi Universiti Washington pada pemberian NSF, 1976-81, dengan dokumentasi sokongan (2 set data). Lihat juga 307.14.

307.7 Rekod Pejabat Penolong Pengarah untuk Hal Ehwal Ilmiah, Teknologi, dan Antarabangsa
1974-83

Rekod Teks: Rekod Program Wanita dalam Sains, yang terdiri daripada rekod pentadbiran, cetakan komputer anugerah 1974-82, laporan projek 1976-83, kertas kerja 1976-82 hasil daripada pemberian NSF, kajian yang dibiayai NSF 1974-82 mengenai wanita dan sains di 1970-an, 1974-82 dan bahan rujukan, 1974-82.

Slaid Warna: "Peluang dalam Sains dan Kejuruteraan," dihasilkan berdasarkan pemberian NSF oleh Suruhanjaya Tenaga Manusia Ilmiah dengan trek suara dan risalah, 1980 (80 gambar). Lihat juga 307.15.

307.8 Rekod Jawatankuasa, Komisen, dan Dewan
1956-75

307.8.1 Rekod Jawatankuasa Presiden Saintis dan
Jurutera

Sejarah: Ditubuhkan sebagai Jawatankuasa Nasional untuk Pembangunan Saintis dan Jurutera, untuk mendorong usaha sektor swasta untuk meningkatkan kualiti dan kuantiti saintis dan jurutera, dengan pengumuman Presiden Dwight D. Eisenhower, 3 April 1956. Dibiayai dan diberi bantuan pentadbiran oleh NSF. Direka semula Jawatankuasa Presiden Ilmuwan dan Jurutera melalui memorandum dari Penolong Presiden Sherman Adams kepada Ketua Panitia Howard L. Bevis, 7 Mei 1957. Ditamatkan pada 31 Disember 1958, dengan fungsi operasi dipindahkan ke Pejabat Mobilisasi Awam dan Pertahanan, dan penyelidikan dan fungsi publisiti dipindahkan ke NSF.

Rekod Teks: Ringkasan mesyuarat, 1956-57. Laporan sementara dan laporan akhir, 1956-58. Siaran akhbar, 1956-58. Pamflet mengenai latihan dan penggunaan tenaga saintifik, 1956-58.

Mencari Bantuan: Forrest R. Holdcamper, komp., "Inventori Awal Rekod Yayasan Sains Nasional: Rekod Jawatankuasa Presiden mengenai Saintis dan Jurutera," NC 39 (1963).

Rekod Berkaitan: Rekod operasi Jawatankuasa di Perpustakaan Eisenhower.

307.8.2 Rekod Jawatankuasa Penasihat Perancangan dan
Hal Ehwal Institusi

Sejarah: Ditubuhkan oleh piagam, 30 November 1972, menurut Akta Jawatankuasa Penasihat Persekutuan (86 Stat. 770), 6 Oktober 1972. Ditamatkan pada 30 November 1974.

Rekod Teks: Minit, laporan, surat-menyurat, dan catatan lain dari jawatankuasa dan pendahulunya, Jawatankuasa Penasihat Perancangan dan Jawatankuasa Penasihat untuk Hubungan Institusi, 1968-75.

307.8.3 Rekod Suruhanjaya Bersama A.S.-A.S. S. pada
Kerjasama Ilmiah dan Teknikal

Sejarah: Ditubuhkan oleh Artikel 7 Perjanjian antara Pemerintah Amerika Syarikat dan Pemerintah Kesatuan Republik Sosialis Soviet mengenai Kerjasama dalam Bidang Sains dan Teknologi, berkuat kuasa 24 Mei 1972, dan berterusan selama lima tahun. Berlanjutan sebagai sebahagian daripada perpanjangan Perjanjian secara sementara dengan pertukaran nota antara Setiausaha Negara AS dan USSR Charge d'Affaires, 24 Mei 1977. Terus sebagai sebahagian daripada pembaharuan Perjanjian selama lima tahun lagi, berkuatkuasa pada 8 Julai 1977. Dibubarkan setelah tamat Perjanjian mengikut syaratnya sendiri, 8 Julai 1982.

Rekod Teks: Rekod yang dikumpulkan oleh Pengarah NSF H. Guyford Stever semasa berkhidmat sebagai ketua perwakilan A.S. pada Suruhanjaya Bersama (1973-75), yang terdiri daripada surat-menyurat, minit, dan catatan kumpulan kerja, 1972-75.

307.9 Rekod Berkaitan Projek Mohole
1962-68

Sejarah: Dimulakan pada tahun 1958, dengan pemberian NSF, oleh American Miscellaneous Society, sebuah jawatankuasa National Academy of Sciences-National Research Council, dengan tujuan menggerudi melalui kerak bumi untuk mendapatkan sampel mantelnya. C. Don Woodward dinamakan sebagai Penyelaras Projek, dan Jawatankuasa Mohole ditubuhkan, oleh Pengarah NSF Alan T. Waterman, 4 Mei 1962. Projek ditamatkan 1 Oktober 1966, kerana kegagalan peruntukan. Operasi projek diselesaikan, 1966-68, melalui peruntukan tahunan NSF biasa.

Rekod Teks: Rekod pentadbiran, termasuk surat-menyurat, laporan projek, dan ringkasan mesyuarat, 1962- 68. Rekod yang berkaitan dengan subkontraktor projek, 1963-67. Rekod perhubungan awam, 1962-66.

Gambar: Peralatan penggerudian pemilihan lokasi latihan Projek Mohole, reka bentuk platform, pengembangan, dan teknologi pemasangan dan penggerudian mendalam, 1962-66 (230 gambar). Lihat juga 307.15.

307.10 Rekod Teks (Umum)
1952-55

Minit dan catatan berkaitan Lembaga Sains Nasional, 1952-55.

307.11 Rekod Kartografi (Umum)

Lihat Gambar Udara di bawah 307.5.2.

307.12 Gambar Gerak (Umum)

Lihat di bawah 307.4.1, 307.4.2, dan 307.5.2.

Rakaman Video 307.13 (Umum)

Lihat di bawah 307.4.1 dan 307.4.2.

307.14 Rakaman Bunyi (Umum)

Lihat di bawah 307.4.2 dan 307.5.2.

307.15 Rekod Boleh Dibaca Mesin (Umum)

307.16 Gambar Pegangan (Umum)

Lihat Gambar di bawah 307.5.2 dan 307.9.

Lihat Slaid Warna di bawah 307.7.

Nota bibliografi: Versi web berdasarkan Panduan untuk Rekod Persekutuan di Arkib Negara Amerika Syarikat. Disusun oleh Robert B. Matchette et al. Washington, DC: Pentadbiran Arkib dan Rekod Nasional, 1995.
3 jilid, 2428 halaman.

Versi Web ini dikemas kini dari semasa ke semasa untuk memasukkan rekod yang diproses sejak 1995.

Halaman ini terakhir dikaji pada 15 Ogos 2016.
Hubungi kami dengan pertanyaan atau komen.


Yayasan Sains Negara

Editor kami akan menyemak apa yang telah anda kirimkan dan menentukan apakah akan menyemak semula artikel tersebut.

Yayasan Sains Nasional (NSF), sebuah agensi bebas kerajaan A.S. yang menyokong penyelidikan dan pendidikan asas dalam pelbagai bidang sains dan matematik dan kejuruteraan. Diilhamkan oleh kemajuan sains dan teknologi yang terjadi sebagai akibat Perang Dunia II, NSF ditubuhkan oleh Kongres AS dalam National Science Foundation Act tahun 1950. Dari anggaran sekitar $ 8.5 bilion pada awal tahun 2020, ia memberikan sekitar 11.000 anugerah setahun kepada saintis, pelajar, dan guru. Ia memberikan sekitar seperlima sokongan persekutuan untuk penyelidikan saintifik asas di institusi akademik, menjadikannya sumber utama untuk pembiayaan dalam penyelidikan asas di Amerika Syarikat.

NSF memberikan dana untuk penyelidikan dalam sains biologi geosains sains matematik sains fizikal Artik dan Antartika penyelidikan sains sosial, tingkah laku, dan ekonomi komputer dan sains maklumat dan kejuruteraan. Ia juga memberikan sokongan untuk program pendidikan dalam matematik dan sains di sekolah rendah hingga peringkat lulusan universiti.

Walaupun NSF tidak mengendalikan makmal, ia membiayai dan menguruskan Program Antartika A.S., yang ditubuhkan oleh NSF pada tahun 1959, yang melakukan penyelidikan dalam beberapa sains. NSF adalah agensi eksekutif untuk Persatuan Universiti Penyelidikan dalam Astronomi, Inc., sebuah konsortium lebih daripada 40 universiti yang menjalankan penyelidikan dalam bidang astronomi di Balai Cerap Nasional Kitt Peak dekat Tucson, Arizona, dan observatorium lain. Pada tahun 1994, pembinaan dimulakan di Observatorium Gemini - teleskop berkembar 8 meter (26 kaki) untuk tapak tontonan optimum di Hawaii dan Chile - yang mana NSF memberikan sebahagian besar pembiayaan projek ini diselesaikan pada tahun 2000. Antara aktiviti lain, NSF bekerjasama dalam menguruskan Pusat Penyelidikan Atmosfera Nasional di Boulder, Colorado, dan menyokong kerjasama antarabangsa di kalangan penyelidik Amerika dan asing. Antara hasil pemberian NSF yang paling ketara ialah rangkaian komputer eksperimental yang berkembang ke Internet.

NSF juga bertanggungjawab untuk mentadbir Pingat Sains Nasional, yang disampaikan oleh presiden Amerika Syarikat. Pemenang pingat disenaraikan dalam jadual.


Kandungan

Berikutan penyebaran Jaringan Sains Komputer (CSNET), rangkaian yang menyediakan perkhidmatan Internet ke jabatan sains komputer akademik, pada tahun 1981, Yayasan Sains Nasional AS (NSF) bertujuan untuk mewujudkan rangkaian penyelidikan akademik yang memudahkan akses oleh penyelidik ke pusat-pusat superkomputer dibiayai oleh NSF di Amerika Syarikat. [3]

Pada tahun 1985, NSF mula membiayai pembentukan lima pusat superkomputer baru:

Juga pada tahun 1985, di bawah kepimpinan Dennis Jennings, NSF menubuhkan National Science Foundation Network (NSFNET). NSFNET menjadi rangkaian penyelidikan tujuan umum, pusat untuk menghubungkan lima pusat superkomputer bersama dengan Pusat Penyelidikan Atmosfera Nasional (NCAR) yang dibiayai NSF antara satu sama lain dan rangkaian penyelidikan dan pendidikan serantau yang seterusnya menghubungkan kampus rangkaian. Menggunakan arsitektur rangkaian tiga peringkat ini NSFNET akan memberikan akses antara pusat superkomputer dan laman web lain melalui rangkaian tulang belakang tanpa kos ke pusat atau ke rangkaian wilayah menggunakan protokol TCP / IP terbuka yang awalnya berjaya digunakan di ARPANET.

56 kbit / s backbone Edit

NSFNET memulakan operasi pada tahun 1986 menggunakan TCP / IP. Enam laman web tulang belakangnya saling berkaitan dengan pautan 56-kbit / s yang disewa, yang dibina oleh kumpulan termasuk Pusat Nasional untuk Aplikasi Superkomputer Nasional (NCSA), Pusat Teori Universiti Cornell, University of Delaware, dan Rangkaian Merit. Komputer mini PDP-11/73 dengan perisian routing dan management, yang disebut Fuzzballs, berfungsi sebagai router jaringan karena mereka sudah menerapkan standar TCP / IP.

Tulang belakang asal 56 kbit / s ini diawasi oleh pusat komputer super sendiri dengan petunjuk yang diambil oleh Ed Krol di University of Illinois di Urbana – Champaign. Router PDP-11/73 Fuzzball dikonfigurasi dan dijalankan oleh Hans-Werner Braun di Merit Network [4] dan statistik dikumpulkan oleh Cornell University.

Sokongan untuk pengguna akhir NSFNET diberikan oleh Pusat Perkhidmatan Rangkaian NSF (NNSC), yang terletak di BBN Technologies dan termasuk menerbitkan "Buku Telefon Pengurus Internet" yang lembut yang menyenaraikan maklumat hubungan untuk setiap nama domain dan alamat IP yang dikeluarkan pada tahun 1990. [5 Secara kebetulan, Ed Krol juga mengarang Panduan Hitchhiker untuk Internet untuk membantu pengguna NSFNET memahami kemampuannya. [6] Panduan Hitchhiker menjadi salah satu manual pertolongan pertama untuk Internet.

Ketika rangkaian wilayah berkembang, tulang belakang NSFNET 56 kbit / s mengalami peningkatan lalu lintas rangkaian yang cepat dan menjadi sesak secara serius. Pada bulan Jun 1987 NSF mengeluarkan permintaan baru untuk menaik taraf dan mengembangkan NSFNET. [7]

Tulang belakang 1.5 Mbit / s (T-1) Edit

Hasil daripada pemberian NSF November 1987 kepada Merit Network, sebuah konsortium rangkaian oleh universiti awam di Michigan, rangkaian 56 kbit / s yang asal diperluas untuk merangkumi 13 nod yang saling berkaitan pada 1.5 Mbit / s (T-1) pada bulan Julai 1988 Pautan tambahan ditambahkan untuk membentuk rangkaian multi-jalur, dan simpul yang terletak di Atlanta ditambahkan. Setiap node tulang belakang adalah penghala yang disebut Nodal Switching System (NSS). NSS adalah sekumpulan pelbagai (biasanya sembilan) sistem IBM RT PC yang dihubungkan oleh rangkaian kawasan tempatan Token Ring. PC RT menjalankan AOS, versi IBM Berkeley UNIX, dan didedikasikan untuk tugas pemprosesan paket tertentu. [8]

Di bawah perjanjian kerjasama dengan NSF, Merit Network adalah organisasi utama dalam perkongsian yang merangkumi IBM, MCI, dan State of Michigan. Merit memberikan keseluruhan koordinasi projek, reka bentuk rangkaian dan kejuruteraan, Pusat Operasi Rangkaian (NOC), dan perkhidmatan maklumat untuk membantu rangkaian wilayah. IBM menyediakan peralatan, pengembangan perisian, pemasangan, penyelenggaraan dan sokongan operasi. MCI menyediakan rangkaian data T-1 pada kadar yang dikurangkan. Negeri Michigan menyediakan dana untuk kemudahan dan kakitangan. Eric M. Aupperle, Presiden Merit, adalah Pengarah Projek NSFNET, dan Hans-Werner Braun adalah Penyelidik Utama.

Dari tahun 1987 hingga 1994, Merit menganjurkan satu siri pertemuan "Regional-Techs", di mana kakitangan teknikal dari rangkaian wilayah bertemu untuk membincangkan isu-isu operasi yang menjadi perhatian bersama antara satu sama lain dan kakitangan kejuruteraan Merit.

Dalam tempoh ini, tetapi terpisah dari sokongannya untuk tulang belakang NSFNET, NSF membiayai:

  • Program Sambungan NSF yang membantu kolej dan universiti memperoleh atau meningkatkan hubungan ke rangkaian serantau
  • rangkaian serantau untuk mendapatkan atau menaik taraf litar komunikasi peralatan dan data
  • NNSC, dan penerus Pengurus Perkhidmatan Maklumat Rangkaian (aka InterNIC) meja bantuan [9]
  • Pengurus Sambungan Antarabangsa (ICM), tugas yang dilakukan oleh Sprint, yang mendorong hubungan antara tulang belakang NSFNET dan rangkaian penyelidikan dan pendidikan antarabangsa dan
  • pelbagai pemberian ad hoc kepada organisasi seperti Persekutuan Jaringan Penyelidikan Amerika (FARNET).

NSFNET menjadi tulang belakang Internet utama bermula pada Musim Panas 1986, ketika MIDnet, jaringan tulang belakang serantau NSFNET pertama mula beroperasi. Menjelang tahun 1988, selain lima pusat superkomputer NSF, NSFNET termasuk penyambungan ke rangkaian serantau BARRNet, JVNCNet, Merit / MichNet, MIDnet, NCAR, NorthWestNet, NYSERNet, SESQUINET, SURAnet, dan Westnet, yang seterusnya menghubungkan sekitar 170 rangkaian tambahan ke NSFNET. [10] Tiga node baru ditambahkan sebagai sebahagian daripada peningkatan ke T-3: NEARNET di Cambridge, Massachusetts Argone National Laboratory di luar Chicago dan SURAnet di Atlanta, Georgia. [11] NSFNET disambungkan ke rangkaian kerajaan persekutuan lain termasuk Internet Sains NASA, Rangkaian Sains Tenaga (ESnet), dan lain-lain. Sambungan juga dibuat ke rangkaian penyelidikan dan pendidikan antarabangsa bermula pada tahun 1988 ke Kanada, Perancis, [12] [13] Belanda, [14] kemudian ke NORDUnet (melayani Denmark, Finland, Iceland, Norway, dan Sweden), [15] dan kemudian kepada yang lain. [16] [17]

Dua Pertukaran Internet Persekutuan (FIX) ditubuhkan pada bulan Jun 1989 [18] di bawah naungan Kumpulan Perancangan Kejuruteraan Persekutuan (FEPG). FIX East, di University of Maryland di College Park dan FIX West, di NASA Ames Research Center di Mountain View, California. Kewujudan NSFNET dan FIXes membolehkan ARPANET dihentikan pada pertengahan tahun 1990. [19]

Mulai bulan Ogos 1990 tulang belakang NSFNET menyokong OSI Connectionless Network Protocol (CLNP) sebagai tambahan kepada TCP / IP. [20] Namun, penggunaan CLNP tetap rendah jika dibandingkan dengan TCP / IP.

Lalu lintas di rangkaian meneruskan pertumbuhan pesatnya, meningkat dua kali ganda setiap tujuh bulan. Unjuran menunjukkan bahawa tulang belakang T-1 akan menjadi berlebihan pada tahun 1990.

Teknologi penghalaan kritikal, Border Gateway Protocol (BGP), berasal dari tempoh sejarah Internet ini. BGP membenarkan penghala pada tulang belakang NSFNET untuk membezakan laluan yang mula-mula dipelajari melalui beberapa jalur. Sebelum BGP, interkoneksi antara rangkaian IP sememangnya bersifat hierarki, dan perencanaan yang teliti diperlukan untuk mengelakkan pengulangan loop. [21] BGP mengubah Internet menjadi topologi berjala, menjauh dari senibina sentris yang ditekankan oleh ARPANET.

Tulang belakang 45 Mbit / s (T-3) Edit

Selama tahun 1991, tulang belakang yang ditingkatkan yang dibina dengan litar transmisi 45 Mbit / s (T-3) digunakan untuk menghubungkan 16 nod. Penghala pada tulang belakang yang ditingkatkan adalah pelayan IBM RS / 6000 yang menjalankan AIX UNIX. Node teras terletak di kemudahan MCI dengan node akhir di rangkaian serantau dan pusat superkomputer yang bersambung. Selesai pada bulan November 1991, peralihan dari T-1 ke T-3 tidak berjalan lancar seperti peralihan sebelumnya dari 56 kbit / s DDS ke 1.5 mbit / s T-1, kerana memerlukan waktu lebih lama dari yang dirancang. Akibatnya, kadang-kadang terdapat kesesakan serius pada tulang belakang T-1 yang terlalu banyak. Setelah peralihan ke T-3, bahagian tulang belakang T-1 ditinggalkan untuk berfungsi sebagai sandaran untuk tulang belakang T-3 yang baru.

Untuk menjangkakan peningkatan T-3 dan menjelang akhir perjanjian koperasi NSFNET 5 tahun, pada bulan September 1990, Merit, IBM, dan MCI membentuk Advanced Network and Services (ANS), sebuah syarikat bukan untung baru dengan asas yang lebih luas Lembaga Pengarah daripada Rangkaian Merit yang berpusat di Michigan. Di bawah perjanjian kerjasamanya dengan NSF, Merit akhirnya bertanggungjawab untuk operasi NSFNET, tetapi subkontrak banyak kerja kejuruteraan dan operasi kepada ANS. IBM dan MCI membuat komitmen kewangan baru dan komitmen lain untuk membantu menyokong usaha baru tersebut. Allan Weis meninggalkan IBM untuk menjadi Presiden dan Pengarah Urusan pertama ANS. Douglas Van Houweling, mantan Pengerusi Lembaga Rangkaian Merit dan Wakil Provost untuk Teknologi Maklumat di University of Michigan, adalah Pengerusi Lembaga Pengarah ANS.

Tulang belakang T-3 yang baru diberi nama ANSNet dan menyediakan infrastruktur fizikal yang digunakan oleh Merit untuk menyampaikan Perkhidmatan NSFNET Backbone.

Sebagai tambahan kepada lima pusat superkomputer NSF, NSFNET menyediakan sambungan ke sebelas rangkaian wilayah dan melalui rangkaian ini ke banyak rangkaian wilayah dan kampus yang lebih kecil. Rangkaian serantau NSFNET adalah: [11] [22]

  • BARRNet, Jaringan Penyelidikan Wilayah Bay Area di Palo Alto, California, California, Jaringan Persekutuan Pendidikan dan Penyelidikan di San Diego, California, melayani California dan Nevada
  • CICNet, Jawatankuasa Rangkaian Kerjasama Institusi melalui Rangkaian Merit di Ann Arbor, Michigan dan kemudian sebagai sebahagian daripada peningkatan T-3 melalui Makmal Nasional Argonne di luar Chicago, melayani Big Ten University dan University of Chicago di Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio, dan Wisconsin
  • JVNCNet, Jaringan Pusat Komputer Nasional John von Neumann di Princeton, New Jersey, menghubungkan universiti-universiti yang membentuk Konsortium untuk Pengkomputeran Ilmiah dan juga beberapa Universiti New Jersey. Terdapat 1.5 Mbit / s (T-1) pautan ke Princeton University, Rutgers University, Massachusetts Institute of Technology, Harvard University, Brown University, University of Pennsylvania, University of Pittsburgh, Yale University, The Institute for Advanced Study, Pennsylvania State University , Institut Teknologi Rochester, Universiti New York, Universiti Colorado dan Universiti Arizona. [23] di Ann Arbor, Michigan melayani Michigan, dibentuk pada tahun 1966, masih beroperasi pada tahun 2013 [24] di Lincoln, Nebraska tulang belakang wilayah NSFNET pertama yang beroperasi pada musim panas 1986, melayani Arkansas, Iowa, Kansas, Missouri , Nebraska, Oklahoma, dan South Dakota, kemudian diperoleh oleh Global Internet, yang diambil alih oleh Verio, Inc., Jaringan Akademik dan Penyelidikan New England di Cambridge, Massachusetts, ditambahkan sebagai sebahagian daripada peningkatan ke T-3, melayani Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, dan Vermont, yang ditubuhkan pada akhir tahun 1988, dikendalikan oleh BBN di bawah kontrak dengan MIT, BBN memikul tanggungjawab untuk NEARNET pada 1 Julai 1993 [25]
  • NorthWestNet di Seattle, Washington, melayani Alaska, Idaho, Montana, North Dakota, Oregon, dan Washington, yang ditubuhkan pada tahun 1987 [26], Jaringan Pendidikan dan Penyelidikan Negeri New York di Ithaca, New York
  • SESQUINET, Rangkaian Sesquicentennial di Houston, Texas, ditubuhkan semasa ulang tahun ke-150 State of Texas, rangkaian Persatuan Penyelidikan Universiti Tenggara di College Park, Maryland dan kemudian sebagai sebahagian daripada peningkatan T-3 di Atlanta, Georgia yang melayani Alabama, Florida , Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, South Carolina, Tennessee, Virginia, dan West Virginia, dijual kepada BBN pada tahun 1994 dan
  • Westnet di Salt Lake City, Utah dan Boulder, Colorado, melayani Arizona, Colorado, New Mexico, Utah, dan Wyoming.

Peruntukan NSF memberi kuasa kepada NSF untuk "memupuk dan menyokong pengembangan dan penggunaan komputer dan kaedah dan teknologi saintifik dan kejuruteraan lain, terutamanya untuk penyelidikan dan pendidikan dalam sains dan kejuruteraan." Ini membolehkan NSF menyokong NSFNET dan inisiatif rangkaian yang berkaitan, tetapi hanya sejauh mana sokongan itu "terutamanya untuk penyelidikan dan pendidikan dalam sains dan kejuruteraan. "[27] Dan ini pada gilirannya dianggap bahawa penggunaan NSFNET untuk tujuan komersial adalah tidak dibenarkan.

Edit Dasar Penggunaan yang Boleh Diterima (AUP)

Untuk memastikan bahawa sokongan NSF digunakan dengan tepat, NSF mengembangkan sebuah Dasar Penggunaan yang Boleh Diterima NSFNET (AUP) yang secara garis besar menggariskan penggunaan NSFNET yang dan tidak dibenarkan. [28] AUP direvisi beberapa kali untuk membuatnya lebih jelas dan untuk memungkinkan penggunaan NSFNET seluas mungkin, sesuai dengan keinginan Kongres seperti yang dinyatakan dalam akta peruntukan.

Satu ciri penting dari AUP ialah ia membincangkan mengenai penggunaan rangkaian yang boleh diterima dan tidak berkaitan langsung dengan siapa atau jenis organisasi yang menggunakannya. Use from for-profit organizations is acceptable when it is in support of open research and education. And some uses such as fundraising, advertising, public relations activities, extensive personal or private use, for-profit consulting, and all illegal activities are never acceptable, even when that use is by a non-profit college, university, K-12 school, or library. And while these AUP provisions seem quite reasonable, in specific cases they often proved difficult to interpret and enforce. NSF did not monitor the content of traffic that was sent over NSFNET or actively police the use of the network. And it did not require Merit or the regional networks to do so. NSF, Merit, and the regional networks did investigate possible cases of inappropriate use, when such use was brought to their attention. [29]

An example may help to illustrate the problem. Is it acceptable for a parent to exchange e-mail with a child enrolled at a college or university, if that exchange uses the NSFNET backbone? It would be acceptable, if the subject of the e-mail was the student's instruction or a research project. Even if the subject was not instruction or research, the e-mail still might be acceptable as private or personal business as long as the use was not extensive. [30]

The prohibition on commercial use of the NSFNET backbone [31] meant that some organizations could not connect to the Internet via regional networks that were connected to the NSFNET backbone, while to be fully connected other organizations (or regional networks on their behalf), including some non-profit research and educational institutions, would need to obtain two connections, one to an NSFNET attached regional network and one to a non-NSFNET attached network provider. In either case the situation was confusing and inefficient. It prevented economies of scale, increased costs, or both. And this slowed the growth of the Internet and its adoption by new classes of users, something no one was happy about.

In 1988, Vint Cerf, then at the Corporation for National Research Initiatives (CNRI), proposed to the Federal Networking Council (FNC) and to MCI to interconnect the commercial MCI Mail system to NSFNET. MCI provided funding and FNC provided permission and in the summer of 1989, this linkage was made. In effect, the FNC permitted experimental use of the NSFNET backbone to carry commercial email traffic into and out of the NSFNET. Other email providers such as Telenet's Telemail, Tymnet's OnTyme and CompuServe also obtained permission to establish experimental gateways for the same purpose at about the same time. The interesting side effect of these links to NSFNET was that the users of the heretofore disconnected commercial email services were able to exchange email with one another via the Internet. Coincidentally, three commercial Internet service providers emerged in the same general time period: AlterNet (built by UUNET), PSINet and CERFnet.

Commercial ISPs, ANS CO+RE, and the CIX Edit

During the period when NSFNET was being established, Internet service providers that allowed commercial traffic began to emerge, such as Alternet, PSINet, CERFNet, and others. The commercial networks in many cases were interconnected to the NSFNET and routed traffic over the NSFNET nominally accordingly to the NSFNET acceptable use policy [32] Additionally, these early commercial networks often directly interconnected with each other as well as, on a limited basis, with some of the regional Internet networks.

In 1991, the Commercial Internet eXchange (CIX, pronounced "kicks") was created by PSINet, UUNET and CERFnet to provide a location at which multiple networks could exchange traffic free from traffic-based settlements and restrictions imposed by an acceptable use policy. [33]

In 1991 a new ISP, ANS CO+RE (commercial plus research), raised concerns and unique questions regarding commercial and non-commercial interoperability policies. ANS CO+RE was the for-profit subsidiary of the non-profit Advanced Network and Services (ANS) that had been created earlier by the NSFNET partners, Merit, IBM, and MCI. [34] ANS CO+RE was created specifically to allow commercial traffic on ANSNet without jeopardizing its parent's non-profit status or violating any tax laws. The NSFNET Backbone Service and ANS CO+RE both used and shared the common ANSNet infrastructure. NSF agreed to allow ANS CO+RE to carry commercial traffic subject to several conditions:

  • that the NSFNET Backbone Service was not diminished
  • that ANS CO+RE recovered at least the average cost of the commercial traffic traversing the network and
  • that any excess revenues recovered above the cost of carrying the commercial traffic would be placed into an infrastructure pool to be distributed by an allocation committee broadly representative of the networking community to enhance and extend national and regional networking infrastructure and support.

For a time ANS CO+RE refused to connect to the CIX and the CIX refused to purchase a connection to ANS CO+RE. In May 1992 Mitch Kapor and Al Weis forged an agreement where ANS would connect to the CIX as a "trial" with the ability to disconnect at a moment's notice and without the need to join the CIX as a member. [35] This compromise resolved things for a time, but later the CIX started to block access from regional networks that had not paid the $10,000 fee to become members of the CIX. [36]

Meanwhile, Congress passed its Scientific and Advanced-Technology Act of 1992 [37] that formally permitted NSF to connect to commercial networks in support of research and education.

An unfortunate state of affairs Edit

The creation of ANS CO+RE and its initial refusal to connect to the CIX was one of the factors that lead to the controversy described later in this article. [38] Other issues had to do with:

  • differences in the cultures of the non-profit research and education community and the for-profit community with ANS trying to be a member of both camps and not being fully accepted by either
  • differences of opinion about the best approach to take to open the Internet to commercial use and to maintain and encourage a fully interconnected Internet and
  • differences of opinion about the correct type and level of involvement in Internet networking initiatives by the public and the private sectors.

For a time this state of affairs kept the networking community as a whole from fully implementing the vision for the Internet as a worldwide network of fully interconnected TCP/IP networks allowing any connected site to communicate with any other connected site. These issues would not be fully resolved until a new network architecture was developed and the NSFNET Backbone Service was turned off in 1995. [11]

The NSFNET Backbone Service was primarily used by academic and educational entities, and was a transitional network bridging the era of the ARPANET and CSNET into the modern Internet of today. With its success, the "federally-funded backbone" model gave way to a vision of commercially operated networks operating together to which the users purchased access. [39]

On April 30, 1995, the NSFNET Backbone Service had been successfully transitioned to a new architecture [40] and the NSFNET backbone was decommissioned. [41] At this point the NSFNET regional backbone networks were still central to the infrastructure of the expanding Internet, and there were still other NSFNET programs, but there was no longer a central NSFNET backbone or network service.

After the transition, network traffic was carried on the NSFNET regional backbone networks and any of several commercial backbone networks, internetMCI, PSINet, SprintLink, ANSNet, and others. Traffic between networks was exchanged at four Network Access Points or NAPs. Competitively established, and initially funded by NSF, the NAPs were located in New York (actually New Jersey), Washington, D.C., Chicago, and San Jose and run by Sprint, MFS Datanet, Ameritech, and Pacific Bell. [42] The NAPs were the forerunners of modern Internet exchange points.

The NSFNET regional backbone networks could connect to any of their newer peer commercial backbone networks or directly to the NAPs, but in either case they would need to pay for their own connection infrastructure. NSF provided some funding for the NAPs and interim funding to help the regional networks make the transition, but did not fund the new commercial backbone networks directly.

To help ensure the stability of the Internet during and immediately after the transition from NSFNET, NSF conducted a solicitation to select a Routing Arbiter (RA) and ultimately made a joint award to the Merit Network and USC's Information Science Institute to act as the RA.

To continue its promotion of advanced networking technology the NSF conducted a solicitation to create a very high-speed Backbone Network Service (vBNS) which, like NSFNET before it, would focus on providing service to the research and education community. MCI won this award and created a 155 Mbit/s (OC3c) and later a 622 Mbit/s (OC12c) and 2.5 Gbit/s (OC48c) ATM network to carry TCP/IP traffic primarily between the supercomputing centers and their users. NSF support [43] was available to organizations that could demonstrate a need for very high speed networking capabilities and wished to connect to the vBNS or to the Abilene Network, the high speed network operated by the University Corporation for Advanced Internet Development (UCAID, aka Internet2). [44]

At the February 1994 regional techs meeting in San Diego, the group revised its charter [45] to include a broader base of network service providers, and subsequently adopted North American Network Operators' Group (NANOG) as its new name. Elise Gerich and Mark Knopper were the founders of NANOG and its first coordinators, followed by Bill Norton, Craig Labovitz, and Susan Harris. [46]

For much of the period from 1987 to 1995, following the opening up of the Internet through NSFNET and in particular after the creation of the for-profit ANS CO+RE in May 1991, some Internet stakeholders [47] were concerned over the effects of privatization and the manner in which ANS, IBM, and MCI received a perceived competitive advantage in leveraging federal research money to gain ground in fields in which other companies allegedly were more competitive. The Cook Report on the Internet, [48] which still exists, evolved as one of its largest critics. Other writers, such as Chetly Zarko, a University of Michigan alumnus and freelance investigative writer, offered their own critiques. [49]

On March 12, 1992 the Subcommittee on Science of the Committee on Science, Space, and Technology, U.S. House of Representatives, held a hearing to review the management of NSFNET. [29] Witnesses at the hearing were asked to focus on the agreement(s) that NSF put in place for the operation of the NSFNET backbone, the foundation's plan for recompetition of those agreements, and to help the subcommittee explore whether the NSF's policies provided a level playing field for network service providers, ensured that the network was responsive to user needs, and provided for effective network management. The subcommittee heard from seven witnesses, asked them a number of questions, and received written statements from all seven as well as from three others. At the end of the hearing, speaking to the two witnesses from NSF, Dr. Nico Habermann, Assistant NSF Director for the Computer and Information Science and Engineering Directorate (CISE), and Dr. Stephen Wolff, Director of NSF's Division of Networking & Communications Research & Infrastructure (DNCRI), Representative Boucher, Chairman of the subcommittee, said:

… I think you should be very proud of what you have accomplished. Even those who have some constructive criticism of the way that the network is presently managed acknowledge at the outset that you have done a terrific job in accomplishing the goal of this NSFNET, and its user-ship is enormously up, its cost to the users has come down, and you certainly have our congratulations for that excellent success.

Subsequently, the subcommittee drafted legislation, becoming law on October 23, 1992, which authorized the National Science Foundation

… to foster and support access by the research and education communities to computer networks which may be used substantially for purposes in addition to research and education in the sciences and engineering, if the additional uses will tend to increase the overall capabilities of the networks to support such research and education activities (that is to say, commercial traffic). [50]

This legislation allowed, but did not require, NSF to repeal or modify its existing NSFNET Acceptable Use Policy (AUP) [28] which restricted network use to activities in support of research and education. [31]

The hearing also led to a request from Rep. Boucher asking the NSF Inspector General to conduct a review of NSF's administration of NSFNET. The NSF Office of the Inspector General released its report on March 23, 1993. [34] The report concluded by:


About the IUCRC Program

The Industry–University Cooperative Research Centers (IUCRC) program accelerates the impact of basic research through close relationships between industry innovators, world-class academic teams, and government leaders. IUCRCs are designed to help corporate partners and government agencies connect directly and efficiently with university researchers to achieve three primary objectives.

  • Conduct high-impact research to meet shared industrial needs in companies of all sizes
  • Enhance U.S. global leadership in driving innovative technology development, and
  • Identify, mentor and develop a diverse high-tech, exceptionally skilled workforce.

The IUCRC program provides a structure for academic researchers to conduct fundamental, pre-competitive research of shared interest to industry and government organizations. These organizations pay membership fees to a consortium so that they can collectively envision and fund research, with at least 90% of member funds allocated to the direct costs of these shared research projects.

Universities, academic researchers, and students benefit from IUCRC participation through the research funding, the establishment and growth of industrial partnerships, and educational and career placement opportunities for students. Industry members benefit by accessing knowledge, facilities, equipment, and intellectual property in a highly cost-efficient model leveraging Center research outcomes in their future proprietary projects interacting in an informal, collaborative way with other private sector and government entities with shared interests and identifying and recruiting talent.

Successful IUCRCs require:

  • A capable research/management team with a strong entrepreneurial mindset
  • Universities, faculty, and students interested in deep engagement with industry
  • A community of industry and government partners seeking pre-competitive, use-inspired research projects.

The National Science Foundation (NSF) provides funding to support Center administrative costs and a governance framework to manage membership, operations, and evaluation. Each IUCRC is expected to grow over time and be independently sustainable by the end of the award period.

Every year, more than 2,000 students engage in industrially-relevant research at Centers nationwide, giving them on the job training for a career in the private sector. About 30% of these student researchers are hired by the member companies.

NSF created the IUCRC program in 1973 to foster long-term partnerships among industry, academe and government. These partnerships support research programs of mutual interest, contribute to the nation's research infrastructure base, promote workforce development, and facilitate technology transfer.

NSF is a federal agency that supports fundamental research and education across all fields of science and engineering, with an $8.1 billion budget in fiscal year 2019.

See the work that our Industry University Cooperative Research Centers are engaging in across all technology and market sectors.


A History of the Broader Impacts Criterion Within the National Science Foundation

The terms broadening participation and broader impacts has been used extensively in science, technology, engineering, and mathematics (STEM) disciplines, especially within STEM funding solicitations and proposals. Although used interchangeably at times, these two terms have their own unique history and definitions. By understanding these differences and similarities, researchers, educators, and administrators can implement and evaluate them more successfully. In this five-part series we’re calling “Broadening Participation and Broader Impacts” we’ll explore the history of these terms, their implementation, and frameworks to evaluate their success.

Broader impacts – the potential to benefit society and contribute to the achievement of specific, desired societal outcomes. & # 8211PAPPG, NSF 19-1

Although most sources of funding, including both federal agencies and private foundations, expect a proposal to discuss the impact, significance or relevance of the proposed work, the National Science Foundation (NSF) is currently the only federal agency in the U.S. that has an explicit broader impacts requirement for their proposals. The following section summarizes the series of events that led NSF to create a broader impacts criterion.

Creation of the Broader Impacts Criterion

The National Science Board (NSB) was established by an Act of Congress in 1950 to serve as the independent governing board of the NSF. In this capacity, the NSB oversees the NSF’s proposal review process. Up until the 1980’s reviewers used two main criteria for evaluating proposals: the intrinsic scientific merit of the proposal, and the qualifications and competence of the principal investigator. To make the distinction between “basic” and “applied” research less rigid, NSB in 1981, adopted a merit-review standard for NSF proposals, which consisted of four criteria: 1) research performance competence of the principal investigator and supporting institution, 2) intrinsic merit of the proposed research, 3) utility or relevance of the research, and 4) effect of the proposed research on the infrastructure of science and engineering.

In 1997, based on recommendations from the Committee on Equal Opportunities in Science and Engineering (CEOSE) which provides advice to the NSF on policies and programs that encourage full participation by women, minorities, and persons with disabilities in STEM, NSB simplified the merit review criteria for proposals from four to two – intellectual merit and broader impacts (NSB/MR-97-05, NSF News Release 97-028). NSF defined broader impacts using five general subcategories: 1) integrating research and education, 2) broadening the participation of underrepresented groups, 3) enhancing the infrastructure for research and/or education, 4) disseminating project results broadly to enhance understanding of science and technology, and 5) describing potential benefits to society at large.

As mentioned in our previous post, the inclusion of an explicit broader impacts criterion in the merit review process was to require proposers to address areas of societal concern within the context of the proposed activity, specifically the area of broadening participation of underrepresented groups within STEM (NSF Important Notice No. 125), a core value adopted by NSF in 1980. Yet, NSF also listed four other general activities that would fulfill the broader impacts criterion and these do not specifically address broadening participation of women, underrepresented minorities, and people with disabilities (NSF 08-062). This effectively dilutes the importance and attention paid to explicit broadening participation activities by NSF proposers and reviewers. In practice, this also creates general confusion around the broader impacts criterion, leading to varied and often conflicting interpretation.

Broader Impacts Criterion in Practice

NSF has a broad portfolio of programs that encompasses ten research areas, each with their own divisions and funding opportunities. Areas of support range from fundamental research, development and enhancement of resources, to education and workforce programs. As a result of these various programs, broader impacts may be intrinsic to the research itself, such as tornado research benefiting people living in high-tornado areas. While in others, the focus may be on education in STEM and both intellectual merit and broader impacts are inherent in the educational work. Individual funding solicitations may also more narrowly define broader impacts activities.

Research team members prepare to drill a hole in the ice as part of a demonstration on sediment core extraction for outreach participants from an Inuit village at Clyde River, Baffin Island. The children were participating in a K-12 outreach program that took place both in and out of the classroom. The outreach was led by Elizabeth Thomas, a graduate student on a National Science Foundation-supported expedition to the Canadian Arctic to study the effects of climate change on the area. Credit: Doug Levere, University at Buffalo

To assess the broader impacts criterion across these varied programs and contexts, the National Alliance for Broader Impacts (NABI) formed in 2014. NABI is a network of individuals and organizations working together to build institutional capacity, advance broader impacts, and demonstrate societal benefits of research. NABI sponsors annual summits with stakeholders to elicit feedback on the broader impacts criterion and recently produced the Broader Impacts Guiding Principles and Questions for National Science Foundation Proposals. In January 2018, NABI compiled data from their own annual summits, findings from NSF’s Office of Integrative Activities two-year study of broader impacts implementation, and NSF’s annual Committee of Visitors report on how the broader impacts criterion is being applied across programs and directorates. Their findings, published in the report, “Current State of Broader Impacts: Advancing Science and Benefiting Society” lists seven common issues across all stakeholder groups:

  1. Broader impacts criterion is unclear.
  2. Random judgments on broader impacts are common in the merit review process.
  3. Relative weighting of intellectual merit and broader impacts is not consistent broader impacts is used by reviewers as a tie-breaker rather than a more substantial and equally weighted criterion.
  4. It is unclear whether broader impacts need to be specifically related to the research aspects of the proposal.
  5. Academic culture does not reward broader impacts activities and dissemination.
  6. Resources to support broader impacts are lacking at the individual, institutional, and national levels.
  7. Universities, governmental representatives, and non-academic partners need better ways to understand and communicate about broader impacts internally and externally to demonstrate research value.

Ironically, the majority of these issues were brought to the attention of the NSB-NSF Staff Merit Review Task Force prior to implementing the new two-criteria system in 1997 (NSB/MR-97-05). Specifically, a third of respondents during the public comment period brought up the “weighting or threshold” issue. Many expressed concern that adopting the new criteria will lead to a decline in NSF’s standards of excellence with “okay research” (i.e., intellectual merit) being upheld by “excellent relevance” (i.e., broader impacts). Others stated that, for research proposals, intellectual merit is much more important than broader impacts, and should be weighted accordingly. Still others criticized the broader impacts criterion as irrelevant, ambiguous, or poorly worded. To resolve this issue, the Task Force chose to include introductory wording for reviewers, stating that the two criteria need not be weighted equally but should depend upon either additional guidance received from NSF and/or the reviewer’s judgment of the relative importance of the criteria to the proposed work. The Task Force believed this was the best option because it wouldn’t polarize the research and education communities and could be applied very flexibly. Yet, this level of flexibility has resulted in random judgements and inconsistencies being applied to the broader impacts criterion as reported by NABI’s 2018 report referenced above.

NABI is not the only group to raise concerns about NSF’s broader impacts criterion. As stated earlier, under the current rubric proposers do not need to address broadening participation explicitly in order to be compliant. This can lead to the continued exclusion of these groups over long periods of time. Various advisory and oversight bodies, including CEOSE in their Biennial Reports to Congress and participants in NSF-sponsored workshops on broadening participation and broader impacts projects (Clewell & Fortenberry, 2009) have insisted NSF weave broadening participation issues of diversity, equity, and accessibility into each of the five broader impacts categories (Fig. 1).

Figure 1: Graphic representation of leveraging broader impacts which illustrates the flow of potential broadening participation influences (from Addressing Broadening Participation within the NSF Broader Impacts Category, a presentation by Johnson and Anderson based in part on Nelson and Bramwell, April 2008).

Broader Impacts Criterion Going Forward

The various advisory and oversight bodies mentioned above all provide recommendations to NSF concerning the broader impacts criterion, and although their focus is slightly different, their recommendations are not mutually exclusive. For example, COESE and other advisory boards want NSF to leverage the broader impacts criterion to support the agency’s core value of broadening participation. Others, such as NABI are generally focused on creating a cultural shift around the value of broader impact activities, both at the institutional and funding agency level. Collectively, integrating broadening participation issues into each of the five broader impacts subcategories, then incorporating NABI’s recommendations could greatly enhance the broader impacts criterion. Which, if any, of these recommendations NSF will ultimately choose to pursue is unclear.

In the meantime, our third post in the Broadening Participation and Broader Impacts series will summarize successful approaches of funded broadening participation grant programs that can be utilized by broader impacts activities.


Short history of the National Research Foundation

The NRF was established through the National Research Foundation Act (Act No 23 of 1998), following a system-wide review conducted for the Department of Arts, Culture, Science and Technology (DACST). The new entity incorporated the functions of the research funding agencies that were previously servicing various sections of the research community, namely the former Centre for Science Development (CSD) of the Human Sciences Research Council (HSRC) and the former Foundation for Research Development (FRD) that included several National Research Facilities.

As an entity of the Department of Science and Technology (DST), the NRF promotes and supports research through funding, human resource development and the provision of National Research Facilities in all fields of natural and social sciences, humanities and technology. The NRF provides services to the research community especially at Higher Education Institutions (HEIs) and Science Councils, with a view to promote high-level human capital development. The NRF aims to uphold excellence in all its investments in knowledge, people and infrastructure.


Grant Program Highlights

Biological Sciences Program
The mission of the Directorate for Biological Sciences (BIO) is to enable discoveries for understanding life. BIO-supported research advances the frontiers of biological knowledge, increases our understanding of complex systems, and provides a theoretical basis for original research in many other scientific disciplines.

Computer and Information Science and Engineering Program
The Directorate for Computer and Information Science and Engineering (CISE) supports investigator-initiated research in all areas of computer and information science and engineering, fosters broad interdisciplinary collaboration, helps develop and maintain cutting-edge national computing and information infrastructure for research and education, and contributes to the development of a computer and information technology workforce with skills essential for success in the increasingly competitive global market.

Advanced Cyberinfrastructure Program
The Advanced Cyberinfrastructure (ACI) Division supports and coordinates the development, acquisition, and provision of state-of-the-art cyberinfrastructure resources, tools, and services essential to the advancement and transformation of science and engineering. ACI also supports forward-looking research and education to expand the future capabilities of cyberinfrastructure.


Largest Research Grant in UConn History Awarded by National Science Foundation

The largest grant in UConn’s history awarded to the UConn School of Medicine will create a Network for Advanced NMR, a powerful method for analyzing molecules.

Amit Luthra Ph.D., Adam Schuyler Ph.D., Bing Hao Ph.D., Jeff Hoch Ph.D., Irina Bezsonova Ph.D., Dmitry Korzhnev Ph.D., Rebecca Page Ph.D., Sandra Weller Ph.D., Wolfgang Peti Ph.D.,
Mark Maciejewski Ph.D. in front of the Gregory P. Mullen NMR Structural Biology Facility. (Tina Encarnacion/UConn Health photo)

The U.S. National Science Foundation (NSF) has awarded the University of Connecticut a $40 million research grant award, the largest in the University’s history, to UConn School of Medicine for further advancing molecular research nationally for chemistry, materials science, and bioscience.

The image shows a structural model of a protein enzyme bound to its target molecule as part of the process to modulate the signaling. NMR spectroscopy was used to identify the bipartite binding interface between the enzyme and its substrate. The ultra-high field NMRs planned for the NAN will provide even better resolution, speed and sensitivity for similar analyses. (Irina Bezsonova, UConn Health photo)

This NSF grant will establish a new future distributed Network for Advanced NMR (NAN), led and based at UConn’s medical school in collaboration with the University of Georgia and the University of Wisconsin. NMR stands for nuclear magnetic resonance, a powerful method for analyzing molecules.

NAN has three main goals: to provide institutional researchers across the country with open access to the most powerful instruments simplify the discovery and use of NMR resources and foster good data stewardship. It will allow researchers across the U.S. to expand their own biomedical research study findings while also collectively contributing any new scientific insights to the evolving NAN knowledge bases.

Researchers will be able to visit or deliver their samples for analysis using state-of-the-art 1.1 GHz instruments located in Madison, Wisconsin and Athens, Georgia. Both instruments will be linked to a central hub based at UConn Health in Farmington that will assist discovery and scheduling, host knowledge bases with information on optimal experiment design, and securely archive the collected data.

“This new infrastructure, along with the network of scientists to support it, will advance research in biological sciences across the country through innovative experimentation and new biological insights,” says NSF Assistant Director for Biological Sciences Joanne Tornow.

Jeffrey Hoch Ph.D. is the director of the Gregory P. Mullen NMR Structural Biology Facility and a professor in the Department of Molecular Biology and Biophysics at UConn School of Medicine. (Tina Encarnacion/UConn Health photo)

The Network, led by UConn’s Jeffrey C. Hoch, Ph.D. of UConn School of Medicine, is a collaboration with co-principal investigators Art Edison from the University of Georgia, and Katherine Henzler-Wildman and Chad Rienstra from the University of Wisconsin.

“Thanks to NSF’s funding, our new Network will empower researchers to have open access to the latest advanced NMR technology with the necessary computational power to fuel future discoveries,” says Hoch, professor in the Department of Molecular Biology and Biophysics at UConn School of Medicine. “Any researcher nationwide with a laptop will be able to make use of these powerful NMR instruments, methods, and online data bank.”

“Our biggest hope is that NAN and advanced NMR technology’s expanded use will accelerate the identification of future disease biomarkers and ultimately improve the health and outcomes of patients everywhere, through future advances in diagnostics, drug discovery, treatments and especially much-needed cures,” says Hoch, who directs UConn’s Gregory P. Mullen NMR Structural Biology Facility, and is the director of NMRbox, an online NMR software resource platform.

UConn’s state-of-the-art Gregory P. Mullen NMR Structural Biology Facility rapidly processes the structures of large molecules, such as proteins, and their many components. While similar to magnetic resonance imaging (MRI), advanced NMR technology is even higher-powered and more sophisticated for molecular-level studies. The massive NMR spectrometers, machines used to examine structures, are 10 feet tall and weigh several tons. These spectrometers use extremely powerful magnets to examine biomolecular structure by placing the nucleus of an atom in a magnetic field. When exposed to the magnetic field and a pulse of radio-frequency energy, each part of a protein produces a specific frequency of radiation which scientists use to build a picture of the molecule.

“The University of Connecticut is extremely honored to receive recognition of our leading NMR research expertise from the National Science Foundation. We are so proud of Dr. Hoch’s incredible accomplishments. This new Network is a major solution and step toward incredible bioscience advancements for his research team, UConn and beyond,” says Dr. Andrew Agwunobi, Interim President of the University of Connecticut and CEO of UConn Health.

“The historic nature of this grant just goes to show that UConn, UConn Health, and the State of Connecticut are national research powerhouses with exceptional faculty who are academic leaders when it comes to groundbreaking innovation and discovery,” Governor Ned Lamont says.

Kneeling: Mark Maciejewski Ph.D. and Dmitry Korzhnev Ph.D.. Standing: Amit Luthra Ph.D., Adam Schuyler Ph.D., Irina Bezsonova Ph.D., Bing Hao Ph.D., Jeffrey Hoch Ph.D., Sandra Weller Ph.D., Wolfgang Peti Ph.D., and Rebecca Page Ph.D., in UConn’s Gregory P. Mullen NMR Structural Biology Facility. (Tina Encarnacion/UConn Health photo)

“I am pleased to see that Dr. Hoch’s tireless effort and longstanding dedication to the field of NMR is eminently recognized by this amazing research grant award. With it, I know that Jeff and his team will continue to make major contributions,” says Dr. Bruce T. Liang, dean of UConn School of Medicine. “I would also like to thank UConn’s Office of the Vice President of Research and Dr. Radenka Maric whose support and leadership has been instrumental in this major grant award’s success.”


National Science Foundation Funds - Natural History Museum of Utah, U College of Education to develop online learning environment

The National Science Foundation (NSF) has awarded a grant with total funding expected to reach $1.3 million this month to the Natural History Museum of Utah and the College of Education at the University of Utah to develop and evaluate an on-line learning environment to support student learning in the biosciences. This pioneering project, titled Engaging Practices for Inquiry with Collections in Bioscience (EPIC Bioscience), uses authentic research investigations of objects from the museum’s digitized natural history collections to provide students, particularly traditionally underserved populations, with novel access to museum objects and engaging STEM investigations to improve critical thinking skills.

Over the next three years, principal investigators Dr. Kirsten Butcher, Dr. Mitch Power, and Madlyn Runburg will lead an interdisciplinary team of educational researchers, museum educators, and scientists who will combine their expertise to develop curriculum aligned with Next Generation Science Standards, a multi-state effort to create new K-12 science education standards that are "rich in content and practice.” The EPIC project will focus on middle school students 6-8 th grades. The new online learning environment will emphasize a major disciplinary core idea in life sciences -- Ecosystems: Interactions, Energy, and Dynamics. Over the project’s three-year period, more than 1,500 Title I and rural students in Utah will have the opportunity to engage in the development of the EPIC Bioscience investigations. The investigations will eventually be made available to the public.

The EPIC Bioscience project represents the next major step forward in the museum’s Research Quest inisiatif. Through that project, the team learned that there is an extraordinary, but untapped opportunity in using digitized museum collections in education. Their work also demonstrated that data provided by natural history collections and associated research could be used to help students gain a better understanding of complex issues like biodiversity and global warming. Research Quest was developed with funding from the Joseph and Evelyn Rosenblatt Charitable Trust and the I.J. and Jeanné Wagner Charitable Foundation as well as input and advice from a national advisory team, teachers from around the country, experts in education, and others.

“The NSF grant is a wonderful validation of the work we’ve done to-date to engage students and teachers in collections-based research as a means to augment their curriculum with more authentic learning experiences.” said Madlyn Runburg, museum director of education initiatives. “We’re enthusiastically exploring technology-based opportunities to continue our museum’s decades-long work to support K12 students and teachers. Research Quest is the product of that work and now with the addition of EPIC Bioscience, we can expand our catalog of online investigations and better understand how learning is happening with these resources, a primary focus as we look to the future,” said Runburg.

EPIC Bioscience will provide a series of online investigations for middle school students to encourage a deeper understanding of science content and advance their critical thinking skills as they engage in science practices to conduct collections-based research with digitized objects from the museum’s botany, entomology, and vertebrate collections. EPIC Bioscience investigations will also align with the workflow of museum scientists engaged in collections-based research, providing students with activities in data collection, data analysis, interpretation of findings, and communicating results. Mitch Power, museum curator of botany and professor of geography will lead the collections content development. The project will examine questions of how and when interactive features of a digital learning environment can better promote student engagement, meaningful collaborative discourse, and robust learning outcomes as middle school students conduct research using digitized museum collections.”

“Objects have inherent interest for students and provide a concrete context for study, with the result that scientific investigations centered around objects are able to motivate students and connect to their prior knowledge in meaningful ways,” said Kirsten Butcher, U professor of instructional design and educational technology. “Digitized objects from museum collections provide a vast educational resource that has yet to be tapped. EPIC Bioscience is at the forefront of this effort, exploring the potential of digitized museum objects to enhance and improve science learning for middle school students.”

NSF's support of EPIC Bioscience offers learning opportunities for the broader on-line science education community, too. The new curriculum will be evaluated by Next Generation Science Standards Peer Review Panel for alignment with science standards. The investigations will be available online for free use as part of the museum’s suite of Research Quest educational resources. Direct outreach will be made to teachers through national meetings and educator newsletters. Project findings also will inform educational outreach for collections digitization initiatives at other institutions and programs. In addition to conference presentations and white papers, a webinar workshop series will be presented and archived to support other digitization groups in developing and implementing effective educational tools.

About the Natural History Museum of Utah

The Natural History Museum of Utah at the University of Utah is a premier scientific research and cultural institution. It opened to the public in 1969 and moved into a spectacular, award-winning new home in 2011 at the Rio Tinto Center in Salt Lake City. The museum’s 30 scientists oversee active field research programs throughout Utah and elsewhere and help care for natural history collections of more 1.6 million objects. The museum offers innovative exhibitions and educational programs to thousands of residents and visitors each year, including timely and interactive temporary and permanent exhibits, numerous special events and other programs. The museum reaches 450,000 people annually on-site and in communities and classrooms statewide.

About the College of Education

The College of Education at the University of Utah creates a learning environment that fosters discovery and dissemination of knowledge to promote learning, equitable access and enhanced- learning outcomes for all students. The college prepares practitioners and scholars through cutting-edge research and practice, by leading innovation and collaboration and by promoting a culture of theory and data-informed inquiry and action.


Tonton videonya: Pusat Sains Negara 2019. Everything is about Science. Part 2 (Julai 2022).


Komen:

  1. Amblaoibh

    Sorry to interrupt you, but I need a little more information.

  2. Daitaxe

    Maksud saya, anda membenarkan kesilapan. Masukkan kita akan berbincang. Tulis kepada saya di PM, kami akan mengatasinya.

  3. Thanos

    These are for!

  4. Kigajind

    Saya mengesyorkan anda melawati tapak dengan sejumlah besar artikel mengenai topik yang menarik minat anda. Saya boleh mencari pautan.

  5. Saylor

    It has no analogues?

  6. Nopaltzin

    Fahami saya?



Tulis mesej